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Abstract
Purpose of Review  Wildfires, wind storms, and pest outbreaks are the main large-scale disturbances of temperate and boreal 
forests, which often generate large amounts of deadwood in the landscape. Salvage and sanitation loggings (hereafter sal-
vage logging) are usually practiced following such disturbance events and the generated deadwood is then extracted from 
the forest. Those practices affect a broad array of species, including fungi, lichens, invertebrates, and vertebrates that make 
use of deadwood either as habitat, food resource, foraging substrate, or as shelter. Woodpeckers, being a key group of forest 
birds dependent on deadwood, can be affected by salvage logging in two ways: (1) a reduction in the availability of food (i.e. 
removal of deadwood along with the saproxylic and predatory invertebrates that usually colonize dead or dying trees follow-
ing forest disturbances) and (2) a decrease in potential nest sites due to the removal of dead trees. Therefore, we assessed the 
global effects of salvage logging on woodpecker abundance and reproduction by conducting a meta-analysis of published and 
unpublished data. We focused on comparing woodpeckers’ responses to forest disturbance in salvage-logged and unlogged 
sites. We considered different types of responses found in the literature, including abundance, occurrence, nest density, and 
breeding success. When analyzing the responses of woodpeckers, we also accounted for the potential effects of tree density, 
time since logging, elevation, latitude, and the continent.
Recent Findings  We found that both numbers and reproduction of woodpeckers were affected by salvage logging following 
a disturbance event. Apart from salvage logging, woodpecker responses were not significantly related to any other variables. 
This highlights that salvage logging can pose a substantial threat to woodpecker assemblages as well as secondary cavity-
users dependent on them.
Summary  Salvage logging and related practices that affect deadwood availability should be carefully planned and prefer-
ably avoided entirely in areas important for woodpecker conservation. In managed forests, deadwood should be retained in 
sufficient quantities to avoid detrimental impacts on woodpeckers and on forest biodiversity in general.

Keywords  Biodiversity loss · Birds · Disturbance ecology · Forest management · Holarctic forests · Sanitary felling

Introduction

Wildfires, wind storms, and pest outbreaks are the main 
disturbances of temperate and boreal forests [1–3]. Such 
disturbances can generate large amounts of deadwood 
across a large spatial extent [4, 5]. As a key resource for 
many species, deadwood is one of the main drivers of 

deadwood-dependent species occurrence and diversity [6, 
7]. In temperate and boreal forests, the supply of standing 
and lying deadwood is usually not constant over time and 
it is heavily affected by forest management [8–11]. Indeed, 
management for timber production should be carefully 
planned to preserve the supply of deadwood and to avoid 
detrimental effects on biodiversity [12•, 13, 14]. Nonethe-
less, forest management practices that reduce deadwood 
availability, such as salvage logging, are still widely applied 
in spite of their threat to biodiversity [15]. Salvage logging 
is practiced when disturbance events generate damaged or 
dying trees and deadwood, which are extracted from the 
forest for timber production to prevent or reduce economic 
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losses. A particular case of salvage logging is sanitary log-
ging which is compulsory in many countries and is aimed 
at removing pest-infested trees to prevent the spread of pest 
outbreaks and to limit tree damage. These practices clearly 
reduce the amount of deadwood in the forest [16] and may 
disrupt the deadwood supply for many species. A large body 
of research has shown the negative effects of salvage logging 
on numerous species including birds and other vertebrates, 
various invertebrates, lichens and fungi [17••, 18]. One of 
the major consequences is that biological communities in 
salvage-logged forests differ from those in unmanaged for-
ests, in terms of species, functional groups, and evolutionary 
lineages [19••, 20, 21].

Among the first species to experience detrimental effects 
following salvage logging are those strictly dependent on 
deadwood for multiple aspects of their ecology, such as 
woodpeckers. Dead and decaying wood are fundamental for 
both nesting and foraging activities of woodpeckers [22•, 
23–27]. Some species, for instance, strongly prefer dead over 
live trees for nesting [28], thus preferring recently disturbed 
forests [29]. Although deadwood in general is the main feed-
ing substrate of many woodpecker species [30–32], standing 
deadwood is fundamental for providing nest sites [6, 33]. 
By providing microhabitats and cavities often exploited by 
other birds, mammals, and invertebrates, woodpeckers fulfil 
key functions in forests and their presence affects biological 
communities [34–38, 39••]. Hence, the occurrence of many 
species in forest communities depends on the availability of 
deadwood and the provisioning of cavities by woodpeckers 
[40, 41].

Despite the importance of woodpeckers for forest com-
munities, their role does not seem to be appropriately rec-
ognized in forest management plans. Salvage logging is 
still intensively practiced, even in protected areas [15, 42•], 
without retaining enough deadwood to maintain biodiversity 
[43]. This situation persists even though the negative effects 
of this practice for many woodpecker species are broadly 
recognized and can include reductions in occurrence and 
abundance [19••, 44] and in nest survival [45]. However, 
some studies detected no negative population or nest sur-
vival responses of woodpeckers to salvage logging [46, 47]. 
Therefore, these effects probably vary depending on the 
woodpecker species and the specific type of forest distur-
bances. In order to clarify the effects of salvage logging on 
entire woodpecker assemblages and on their responses to 
post-disturbance forest conditions, we conducted a meta-
analysis of existing research. In contrast to previous meta-
analyses that have assessed effects on multiple higher-level 
taxa [17••, 48, 49], we carried out an in-depth analysis spe-
cifically on woodpeckers with the following objectives:

1.	 To quantify the overall response of woodpecker assem-
blages to disturbances (i.e. fire, wind storms, and/or 

insect outbreaks) in salvage-logged and unlogged dis-
turbed forests

2.	 To evaluate if abundance or reproduction of woodpeck-
ers is additionally compromised by salvage logging

3.	 To understand the responses in relation to environmental 
covariates including elevation, latitude, tree density, and 
the number of years since salvage logging occurred

We summarize knowledge that describes and quanti-
fies the response of woodpecker assemblages to salvage 
logging in disturbed forests and provide suggestions for 
management.

Methods

Literature Search

We used a broad definition of ‘salvage logging’, including 
both typical salvage logging and sanitary logging. Our lit-
erature search (see below) also considered the synonyms 
‘salvage felling’ and ‘sanitation felling’ in the search string. 
Most of the literature refers to ‘salvage logging’ (or felling), 
whereas ‘sanitary logging’ (or felling) is mentioned by far 
fewer studies. We searched the Web of Science (WoS) data-
base on October 27, 2021, and complemented our search 
with further articles obtained by examining the literature 
cited in the articles retrieved by the main WoS search results. 
The WoS database was searched using the following search 
strings: (1) TS = (woodpecker* AND salvage* AND log-
ging*); (2) TS = (bird* AND salvage* AND logging*); and 
(3) TS = (woodpecker* AND ((salvage* AND logging*) 
OR disturbance)). We then merged the 3 search strings using 
the operator ‘OR’ to obtain the final article list. In addition, 
we also searched the Swiss Wildlife Information Service 
database (https://​www.​swiso​nline.​ch/​en/​home) for literature 
in German on October 22, 2021, with the keywords ‘Pici-
dae UND Scolytinae’ (Picidae AND Scolytinae), ‘Picidae 
UND Feuer’ (Picidae AND fire), ‘Picidae UND Waldbau’ 
(Picidae AND forestry (or silviculture)), and ‘Picidae UND 
Wald’ (Picidae AND forest) (please note that this database 
has a more limited set of potential keywords that can be 
searched). The search returned 233 articles in total, includ-
ing both peer-reviewed and grey literature (e.g. technical 
reports or master/Ph.D. theses). Furthermore, we collected 
unpublished datasets from several sources (Table 1). Articles 
that did not report explicit results about woodpeckers or that 
did not address explicitly the effect of salvage logging were 
excluded. These concerned, for instance, articles which dealt 
with the effects of salvage logging on birds from a forecast 
modelling perspective [18, 50], did not report explicitly 
on woodpecker responses to salvage logging [51, 52], or 
focused more on the effects of natural disturbance events 

2 Current Forestry Reports (2023) 9:1–14

https://www.swisonline.ch/en/home


1 3

rather than on the effects of salvage logging on woodpeck-
ers [53, 54].

We divided the studies according to the natural distur-
bance events into fire, windthrow, or bark beetle outbreaks. 
We analyzed the responses of woodpeckers at sites that were 
salvage-logged following natural disturbance, and consid-
ered control sites those affected by natural disturbance but 
not salvage-logged. We included data from both studies that 
reported single species or aggregated results for the wood-
pecker assemblage, whereby we excluded the wryneck Jynx 
torquilla as it does not excavate its own cavities.

Meta‑analysis

Data about woodpecker responses were heterogeneous 
among datasets, including metrics describing numerical 
responses such as abundance or probability of occurrence, 
and metrics describing functional responses such as repro-
ductive success. Traditional meta-analysis requires homog-
enous metrics to derive effect size measures such as the 
standardized mean difference [57, 58]. To overcome this 
limitation, we maximized data integration by opting for a 
more flexible approach that allowed us to model the dif-
ferent response metrics of woodpeckers included in each 
dataset [59]. We considered two main types of woodpecker 
responses to forest disturbance, based on the potential use 
by woodpeckers of the deadwood resource created by the 
disturbance event: numerical responses (including metrics 
such as abundance and density of individuals), assumed 
as a response to the increase in deadwood-dependent prey 
items (bark beetles and wood-boring insects); and functional 
responses (including metrics such as number of nests, nest 
density, and reproductive success), assumed as a response 
to the increase in potential nest site substrates. From each 
dataset, we extracted the mean value reported for each given 
metric with standard deviation for every ‘treatment-year’, 
i.e. salvage logging following natural disturbance versus 
no salvage logging following natural disturbance. Most of 

the woodpecker species included in the datasets occurred 
with < 30 records, except for those typical of disturbed for-
ests, such as the black-backed woodpecker Picoides arcti-
cus. Moreover, our aim was to measure the global effect 
of salvage logging on the entire woodpecker assemblage, 
and therefore, we summed the species mean responses and 
averaged the species response variances. For articles that 
presented data and results in visual formats, we used Web-
PlotDigitizer 4.5 [60] to extract data. In order to obtain com-
parable response measures, independent of the response met-
ric and type, we scaled the means and standard deviations 
of the woodpecker responses within each dataset. Responses 
were scaled by subtracting from them the individual dataset 
mean response and dividing the resulting quantity by the 
dataset standard deviation. Standard deviations were scaled 
by averaging their variances. We also extracted additional 
variables associated with each woodpecker dataset when 
available, including tree density, the number of years after 
logging, the mean elevation of the study site, latitude, and 
the continent as a broad geographic location.

We modelled woodpeckers’ responses to forest distur-
bance in salvage-logged and unlogged forests with a Bayes-
ian hierarchical linear mixed-effect model [59]. We assumed 
that the unbiased response of the woodpecker assemblage to 
disturbance, covering all response metrics and types, differs 
between salvage-logged and unlogged sites. Our aim was to 
estimate such differences by modelling that difference as an 
additive component of the woodpecker response in salvage-
logged forests. For each salvage-logged site, we considered 
the sub-model:

where yi is the woodpeckers’ observed mean response to 
disturbance at the site i, which is assumed to follow a normal 
distribution centred around the latent mean Yi, and �2

y
 is the 

observed variance of yi. The variable Yi was also assumed 
to follow a normal distribution:

(1)yi ∼ Normal

(

Yi, �
2
y

)

Table 1   Description of the unpublished datasets retrieved and included in this study. Each dataset provided abundance responses

Location Disturbance Forest type Most 
recent 
data-year

No. of years No. of plots Reference

Sweden Fire Scots pine Pinus sylvestris (53%), Norway 
spruce Picea abies (18%), mixed coniferous 
(22%), deciduous (7%)

2020 6 110 Mikusiński unpublished 
data; early results 
included in [55]

Germany Wind European beech Fagus sylvatica 2021 3 18 Thorn unpublished data
Slovakia Wind Norway spruce Picea abies (88%), mixed conif-

erous (10%), mixed (2%)
2020 3 20 Krištín unpublished data; 

early results included in 
[56]

Poland Wind Scots pine Pinus sylvestris (81%), Norway 
spruce Picea abies (11%), deciduous (8%)

2021 7 144 Żmihorski unpublished data
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where µi represents the latent unbiased response of the 
woodpecker assemblage to disturbance. Variability between 
studies was modelled as a random effect. Therefore, if we 
consider the random effect γki of the kth dataset at site i, and 
the salvage logging effect θ, we can describe our model for 
salvage-logged sites as:

where ‘cov’ indicates a generic variable included as fixed 
effect. Simultaneously, we modelled the response in control 
sites j as the sub-model:

Considering that the random effects γki and γkj were drawn 
from the same normal distribution (as they identify the same 
dataset), the main difference between the two models is the 
presence of the salvage logging effect θ. The parameters µi 
and νj are the unbiased response of woodpeckers to distur-
bance at each salvage-logged and unlogged site-year, respec-
tively. The parameters µi and νj represent the standardized 
responses, independent of the metric or type of response 
(e.g. abundance or nest success) and can range from 0 to 
∞. The parameter θ indicates a significant effect of salvage 
logging on woodpeckers’ responses, if it is significantly dif-
ferent from 0.

In addition to the basic random-effect model, we included 
several variables as covariates of the fixed effects in the 
model. We tested whether woodpeckers’ responses differed 
according to the response types (i.e. numerical and func-
tional) by modelling the response type as a binary covari-
ate where 0 = numerical and 1 = functional. We also tested 
the effect of the continent (North America vs Europe) as a 
binary covariate. Continuous covariates, instead, comprised 
tree density (n/ha), elevation (m a.s.l.), latitude, and the num-
ber of years since salvage logging occurred, and were scaled 
prior to the analysis. We did not consider other potential 
covariates, such as natural disturbance type or the proportion 
of salvage logged wood, because either the variability in the 
response was too low or the number of datasets reporting the 
variable was too small. The variable ‘tree density’ was avail-
able for a limited number of datasets for 58 sites (41 salvage 
logged and 17 unlogged), whereas the full dataset included 
141 sites (89 salvage logged and 52 unlogged). Hence, we 
performed a separate model selection for models with and 

(2)Yi ∼ Normal

(

�i, �
2
y

)

(3)log
(

�i

)

= � + yki + covi

(4)xj ∼ Normal
(

Xj, �
2
x

)

(5)Xj ∼ Normal
(

vj, �
2
X

)

(6)log
(

vj
)

= ykj + covj

without tree density. The two sets of models included 32 
models each. The first model set included the null model 
(i.e. the model without fixed effect) for comparison. Model 
selection was performed using the Watanabe-AIC (WAIC), 
which measures the fitness of a model, with lower values 
indicating a better fit [61]. As for the AIC [62], models scor-
ing WAIC close to the lowest scoring model are considered 
similarly supported [63]. We considered that a Bayesian 
credible estimate (equivalent to ‘significant’ in frequentist 
inference) would be drawn from a posterior distribution that 
did not cross 0 for ≥ 95% of the posterior samples, meaning 
that we used the f value (a mirror of the p value), which 
ranges from 0 to 1, and indicates the overlap of a parameter 
estimate with 0. We employed the Bayesian R2 to measure 
the proportion of explained variance of the two sub-mod-
els [64]. We used uninformative priors for modelling our 
parameters: for response variables and random effects, we 
used Normal[mean = 0, tau = 1/

√

Uniform(0, 10) ]; and for 
fixed effects, Normal(0, sd = 4). We ran one chain of 220,000 
iterations, of which the first 20,000 were discarded, and the 
remaining iterations were thinned by 10. The convergence 
of chains was visually assessed and the null model chains 
are provided in the supplementary information (Fig. S1, S2). 
We conducted the meta-analysis using Bayesian hierarchical 
models [59], built with the package ‘nimble’ (model code 
available in the supplementary information) [65, 66] in R 
4.1.0 [67].

Results

Literature Search

The meta-analysis made use of 25 datasets from the period 
1982–2020, of which 21 were retrieved from published arti-
cles obtained after screening the literature search results. 
Four were added from unpublished datasets. Eight datasets 
investigated woodpecker functional responses, while the 
remaining focused on numerical responses. Studies were 
carried out in North America and Europe (Fig. 1). No arti-
cle from other continents where salvage logging is practiced 
could be included, although the literature search before the 
screening returned some articles from Asia (e.g. [68]). The 
woodpecker assemblages in the retrieved datasets included 
twelve out of 23 woodpecker species from North American 
assemblages, and seven out of ten species from European 
assemblages (Table 2). Five datasets included data from 
boreal forests where tree species composition was reported 
as dominated by coniferous species or mixed conifer-broad-
leaf (Fig. 1). The remaining datasets included only conifer-
dominated forests and one broadleaf-dominated forest. The 
main natural disturbance investigated was fire, whereas 
windthrow was included in six datasets and bark beetle 
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outbreaks in four datasets (Fig. 1). However, in two cases, 
bark beetle outbreaks were triggered by windthrows or were 
following wildfires, so that it was not possible to separate the 
causes. Regarding the sampling design, two studies did not 
have control sites as they compared the effects of different 
salvage logging applications.

Meta‑analysis Results

The meta-analysis included several metrics describing the 
numerical and functional responses of woodpeckers to for-
est disturbances (Table 2). The North American species 
were reported to respond negatively to salvage logging in 
69.8% of the cases, positively in 22.6%, and neutrally in 
7.6% (Table 2). In contrast, the European species responded 

negatively in 50% of the cases, positively in 33.3%, and neu-
trally in 25% (Table 2, note that some datasets reported mul-
tiple metrics, hence the total is greater than 100%). The two 
model sets showed similar empirical support for all models, 
as the maximum ΔWAIC was 0.8 (Tables S1, S2). However, 
only few models returned a credible estimate for the salvage 
logging effect. Since the null model was one of those, we 
selected it as the best model for inference, given that it is 
more parsimonious in the number of parameters.

The Bayesian R2 for the salvage logging and control sub-
models was 0.69 (range = 0.51–0.92) and 0.79 (0.61–0.98), 
respectively. The salvage logging effect θ was consistently 
negative in all models (Tables S1, S2), with the best model 
estimating an effect of − 1.34 (± 0.74 SD, 95% CI =  − 2.83 
to 0.07, f = 0.04). The difference between the response of 

Fig. 1   Study locations of the datasets and examples of woodpecker 
species included in the meta-analysis. Species depicted from the left: 
Sphyrapicus thyroideus, Leuconotopicus villosus, (photo credits: 
Marco Basile); Picoides tridactylus, Dryocopus martius (photo cred-
its: Stano Harvančík). Numbers in maps correspond to references: 1. 
Cahall and Hayes, (2009) [69], 2. Campos et al. (2019) [70], 3. Caton 
(1996) [71], 4. Haggard and Gaines (2001) [72], 5. Blake (1982) [73], 
6. Hanson and North (2008) [74], 7. Hutto and Gallo (2006) [75], 8. 
Koivula and Schmiegelow (2007) [76], 9. Kroll et  al. (2010) [47], 

10. Kroll et  al. (2012) [77] 11. Kronland and Restani (2011) [78], 
12. Repel et  al. (2020) [79], 13–14. Saab and Vierling (2001) [80], 
15. Saab et al. (2007) [81], 16. Schwab et al. (2006) [82], 17. Tarbill 
et al. (2018) [44], 18. Żmihorski et al. (2019) [55], 19. Werner et al. 
(2015) [83], 20. Georgiev et al. (2021) [84], 21. Thorn unpublished, 
22. Mikusiński unpublished, 23. Krištín unpublished, 24. Van Wil-
genburg and Hobson (2008) [85], 25. Żmihorski unpublished. Forest 
cover layers from Tuanmu and Jetz (2014) [86]

5Current Forestry Reports (2023) 9:1–14



1 3

Table 2   Woodpecker species 
included in the published 
studies considered in the 
meta-analysis, with response 
metrics and the observed 
direction of the response in 
the salvage logged sites of 
the referenced studies. SL, 
salvage logging; ↓ = decrease; 
↑ = increase; ↔  = neutral. 
Multiple arrows indicate 
different effects were found in 
the referenced studies

Species Location Response SL effect References

Dryocopus pileatus N America Abundance ↓↑ [76]
Nest numbers ↓ [71]

Colaptes auratus N America Abundance ↓ [73]
↑ [76]
 ↔  [77]
 ↔  [78]

Nest density ↓ [75]
↓ [78]
↓ [81]

Nest numbers ↓ [71]
Sphyrapicus nuchalis N America Nest density ↓ [75]

Nest numbers ↓ [71]
Sphyrapicus thyroideus N America Abundance ↑ [77]

Nest density ↓ [75]
Nest numbers ↑ [47]

Sphyrapicus varius N America Abundance ↑ [76]
Melanerpes lewis N America Nest density ↓ [75]

↑ [81]
Nest success ↓↓ [80]

Melanerpes erythrocephalus N America Abundance  ↔  [78]
Nest density ↑ [78]

Picoides dorsalis N America Abundance ↓↑ [76]
Nest density ↓ [75]
Nest numbers ↓ [71]

Picoides arcticus N America Abundance ↓ [69]
↓↑ [76]
↓ [77]
↓ [82]

Occurrence ↓ [74]
Nest density ↓ [75]

↓ [81]
↓ [44]

Nest numbers ↓ [71]
↓ [47]

Dryobates pubescens N America Abundance ↓ ↔  [76]
Nest density ↓ [75]
Nest numbers ↓ [71]

Leuconotopicus villosus N America Abundance ↓ [73]
↓↑ [76]
↑ [77]
↓ [78]

Density ↓ [69]
Occurrence ↓ [74]
Nest numbers ↓ [71]

↑ [47]
Nest density ↓ [78]

↓ [81]
Leuconotopicus albolarvatus N America Occurrence ↓ [74]
Picus viridis Europe Abundance ↑ [55]

↑ [84]
Picus canus Europe Abundance ↑ [55]
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woodpecker assemblages in salvage-logged and unlogged 
forests was always negative (Fig. 2). While in unlogged 
sites woodpecker responses to natural disturbance were 

very variable with a mean response of 0.13 ± 0.05, in 
salvage logged sites, the model estimated much smaller 
responses with a mean of 0.04 ± 0.01 (Fig. 3). The raw 

Table 2   (continued) Species Location Response SL effect References

Dryocopus martius Europe Abundance ↓ [55]
↓ Żmihorski unpublished
 ↔  Mikusiński unpublished
↑ [83]
 ↔  [84]

Density ↓ [79]
Picoides tridactylus Europe Abundance ↓ [55]

 ↔  Mikusiński unpublished
↓ Krištín unpublished
 ↔  [83]

Density ↓↑ [79]
Dendrocopos major Europe Abundance ↑ [55]

↓ Żmihorski unpublished
 ↔  Mikusiński unpublished
↓ Krištín unpublished
↓ Thorn unpublished
↓ [83]
↑ [84]

Density ↓↑ [79]
Dendrocopos leucotos Europe Abundance  ↔  [55]
Dryobates minor Europe Abundance ↓ [55]

Fig. 2   Effect of salvage logging 
on woodpeckers’ responses 
to forest disturbance for the 
datasets included in this meta-
analysis. Dots indicate the dif-
ference in the response between 
salvage-logged and unlogged 
sites. *Saab and Vierling (2001) 
[80] provide two metrics of 
woodpecker response and it is 
included twice. Lines indicate 
95% credible intervals
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data on the natural scale showed differences in woodpecker 
responses to disturbance in salvage-logged and unlogged 
forests that varied according to the response metric consid-
ered. For instance, abundance decreased by 22.6%, from 
a global average of 4.92 in unlogged forests to 3.81 in 
salvage-logged forests; reproductive success went from 
0.81 in unlogged forests to 0.72 in salvage-logged for-
ests, down by 11.4%. The model, however, by accounting 
for the variability among datasets due to differences in 
species composition and in response size (especially in 
metrics from unlogged sites, often skewed towards larger 
values), provided an unbiased assessment of the global 
effect of salvage logging across all datasets, which was 
equivalent to a global average decrease by 72.7% (95% 
CI, 63.2–78.8%) in salvage logged sites compared with 
disturbed sites without salvage logging.

No difference was found between response types, indicat-
ing that salvage logging affected numerical and functional 
responses of woodpecker assemblages to forest disturbance 
similarly. No other modelled covariate returned credible esti-
mates, i.e. ≥ 95% of the posterior distribution crossed zero 
(Fig. 4).

Discussion

Woodpeckers’ Responses in Salvage‑Logged Forests

Our meta-analysis of data from 21 published and four 
unpublished datasets quantified the detrimental effects of 
salvage logging on woodpeckers’ assemblages. Specifi-
cally, woodpeckers’ abundance or reproduction decreased 
on average by 72.7% in the presence of salvage logging, 
compared to unlogged disturbed sites. In addition, no differ-
ence emerged between numerical and functional responses, 
indicating that salvage-logging can similarly affect both 
woodpeckers’ abundance and reproduction. In other words, 
whatever the response of woodpeckers to forest disturbance 
is, considering either their abundance or reproduction, we 
estimated an average 72.7% decrease when salvage logging 
is practiced.

The dependence of woodpeckers on standing deadwood, 
and especially recently dead trees, makes them particularly 
susceptible to the removal of this resource from forests [26, 
32]. The black-backed woodpecker, for instance, is almost 
exclusively found in recently disturbed forests of North 

Fig. 3   Posterior distributions of 
the woodpeckers’ response to 
natural disturbance in salvage-
logged and unlogged forests. 
Bars represent the frequency 
of values in the posterior 
estimates. Values closer to 0 
indicate smaller responses
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America, as it feeds mainly on the larvae of wood-boring 
insects found in recently burned trees or trees that are killed 
by beetles [74, 87]. In Europe, the occurrence of specialists 
feeding on bark beetles and wood-boring insects such as the 
three-toed woodpecker Picoides tridactylus is also tightly 
linked to the availability of freshly killed trees and snags [23, 
27, 33]. Moreover, in recently burned areas, this species uti-
lizes a broader spectrum of foraging substrates which leads 
to particularly high attractiveness of such places, causing 
high population densities [88, 89]. Salvage logging, due to 
economic reasons, focuses on dead and surviving trees with 
larger diameter (e.g. [90]), meaning that potential feeding 
substrates and trees suitable as nest sites are largely or com-
pletely removed, limiting local feeding and breeding oppor-
tunities for woodpeckers, and this impact is long-lasting. 
Furthermore, a strong reduction in tree density caused by 
salvage logging may cause increased predation pressure on 
woodpeckers nesting in more open forests [45].

When considering multiple assemblages, our study 
showed that their responses to disturbance after salvage log-
ging are smaller (e.g. resulting in lower species abundance 
or breeding success) than the responses to disturbance in the 
absence of salvage logging. Some woodpecker species can 

actually benefit from the open-habitat condition created by 
salvage logging as they mainly feed on ground or bark-sur-
face arthropods [46, 77]. However, those benefits are prob-
ably less influential for the entire woodpecker assemblage 
than the detriments linked to the reduction in deadwood 
availability and permanence in the forest. Hence, salvage 
logging may also affect those open-habitat species, by limit-
ing the opportunities for nesting.

Variability in Woodpeckers’ Responses

Prior to our meta-analysis, the literature suggested the 
occurrence of differences in susceptibility to salvage log-
ging between the North American and European wood-
pecker assemblages as different species show different 
degrees of dependence on deadwood [32, 91]. The North 
American deadwood specialists, such as the black-backed, 
the hairy (Leuconotopicus villosus) and the pileated wood-
pecker (Dryocopus pileatus), have a higher relative inci-
dence within North American woodpecker assemblages in 
comparison with European assemblages, where deadwood 
specialists such as the three-toed woodpecker and the white-
backed woodpecker (Dendrocopos leucotos) are much less 

Fig. 4   Posterior estimates 
of the covariates included in 
the analysis of woodpeckers’ 
responses to natural disturbance 
in salvage-logged and unlogged 
forests. 95% credible intervals 
of all covariates cross 0. Year 
after logging, tree density, 
latitude, and elevation were 
continuous covariates, whereas 
response type (numerical vs 
functional) and continent (N 
America vs Europe) were 
binary
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common [92–94]. Hence, we expected smaller contrasts in 
the post-disturbance responses of European woodpeckers 
between salvage-logged and unlogged forests than in North 
American woodpeckers. However, no differences emerged 
in the responses of woodpecker assemblages between the 
two continents. While this finding may be a consequence 
of the smaller sample size from Europe, it still highlights 
the detrimental effects of salvage logging on woodpecker 
assemblages on both continents.

Similarly, the absence of a significant effect of some 
covariates known to influence woodpeckers’ responses 
might have been overcome if the sample size had been larger 
than that available in this study. For instance, the year after 
logging can be a significant variable explaining changes in 
species composition and diversity of birds to forest manage-
ment in general [95]. Indeed, the model including year after 
logging as a covariate received similar empirical support 
as the model without this covariate. This pointed towards a 
negative effect in both salvage-logged and unlogged forests 
which, however, was more notable in the former.

Our literature search revealed some research gaps, mainly 
regarding the geographic extent of the topic, and the species 
and type of disturbance covered. All datasets included in the 
meta-analysis came from either North America or Europe. 
Although some articles from eastern Asia were found, they 
did not meet some of the criteria that are required for inclu-
sion in the analysis, or the necessary information was not 
provided on request. Some species were over-represented 
in the datasets whereas others were under-represented. Part 
of this potential bias is a natural consequence of disturbance 
specialists being more abundant in their most suitable habi-
tat. Therefore, we suggest that future studies focus on the 
entire woodpecker assemblage and not only disturbance-spe-
cialist species. Finally, fire disturbance was over-represented 
in North American literature and wind storms dominated 
studies in Europe. Thus, there is a particular need for more 
post-fire research in Europe, especially in the Mediterranean 
basin where fire is a common cause of forest disturbance. In 
addition, given the considerable increase in the incidence 
of bark beetle outbreaks in recent years [96], the dynam-
ics of forests impacted by large-scale bark beetle outbreaks 
should gain more attention from ecologists and ornitholo-
gists worldwide.

Management Implications

Salvage logging can effectively decrease the amount of dead-
wood in the forest even decades after disturbance occurred 
[16, 97]. In fact, deadwood removal during salvage logging 
can lead to a decrease or losses of woodpecker populations 
and, consequently, the loss of associated ecosystem functions 
[98]. Many species that use woodpecker cavities for nest-
ing, shelter, or storage of food can be negatively impacted 

by a decline in woodpeckers or their range fragmentation 
[38, 39••, 40, 99, 100]. Especially where woodpeckers are 
the main providers of cavities, such as in North America or 
boreal Europe, cavity supply should be favoured by forest 
management policies [25]. For instance, standing dead or 
decaying trees should be retained as they are preferred by 
woodpeckers [22•, 101]. Early decay deadwood is associated 
with increased saproxylic beetle activity [102] since fresh 
deadwood offers large amounts of nutrient-rich resources 
in both phloem and sapwood which are suitable for xylo-
phagous and saproxylic species [103]. Therefore, delayed 
salvaging can also represent an option to allow at least the 
first phases of deadwood-related processes. This approach 
can mitigate the effects of salvage logging on woodpeckers 
[44], although it may not be feasible when the disturbance 
concerns a pest outbreak that necessitates sanitation felling 
to prevent or reduce the spread of infestations to other trees 
[104, 105]. Another option could be selective salvaging that 
retains trees or stands being most suitable in terms of valu-
able deadwood provision.

We note that, in light of the evidence of generally nega-
tive impacts of salvage logging on woodpeckers, a group of 
keystone, ecosystem engineer species in forest ecosystems, 
this widespread practice should be more carefully planned 
at every spatial and temporal scale to ensure the continu-
ity of the deadwood resources and the supply of wood-bor-
ing insects. The diversification of management strategies, 
including different levels of harvest, an increase in tree spe-
cies richness, and allowing natural regeneration, represents 
at the moment the best options to preserve the naturalness 
of temperate and boreal forests [106–108]. Such multiscale 
planning could be adapted to consider the regional wood-
pecker assemblages and the ecological requirements of spe-
cific species [109]. In particular, constant monitoring of the 
bird assemblage can provide timely and important informa-
tion about the species present at disturbed sites and, conse-
quently, provide reliable information to reduce the intensity 
of salvage logging interventions with the aim of reducing 
short- and long-term impacts on woodpeckers. This infor-
mation is often already collected through bird monitoring 
schemes in many parts of Europe and North America. More-
over, since different tree species differ in their value as forag-
ing substrate and varying potential for cavity excavation by 
woodpeckers [37, 109], the retention of trees after natural 
disturbances could be guided by these characteristics.

Conclusions

In the unlogged forests considered in this meta-analysis, 
woodpeckers’ response to disturbance showed higher vari-
ability than in salvage-logged forests, suggesting that the 
benefits of forest disturbance (new habitat patches, increase 
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in standing and lying deadwood, increase in wood-boring 
and saproxylic insects) for the woodpecker assemblage 
were strongly limited by salvage logging. Indeed, where 
salvage logging was practiced, woodpecker responses to 
disturbance consistently led to reductions in abundance or 
reproduction, compared with areas without salvage log-
ging, across the analyzed datasets. At the same time, our 
meta-analysis did not identify other significant potential 
drivers of variability in woodpeckers’ responses, such 
as elevation or tree density, highlighting salvage logging 
as the single most influential factor altering the natural 
dynamics of woodpecker assemblages in post-disturbance 
forests. However, different woodpecker species, due to 
their ecologies, are expected to have their own trajectories 
of response to disturbances and post-disturbance man-
agement, and there is still insufficient information on the 
thresholds of how much deadwood should realistically be 
preserved to avoid detrimental effects on biodiversity and 
species such as woodpeckers. Therefore, we advise further 
studies on those responses should be carried out particu-
larly in Europe, South America, Africa, and Asia where 
such information is still scarce.
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